
Rev. 4/072007

POSITIONING AND CONTOURING
CONTROL SYSTEM
ADDIPOS APCI-8001

G3-ElCam Interface

CONTENTS 3

1 Introduction ..3

2 Using the ELCAM functionality ..4

2.1 Initialising ELCAM ...4
2.2 Functions of the ELCAM module ..5
2.3 Multi-line tables ...7
2.4 Error request from ELCAM..7
2.5 Further characteristics of the ELCAM functionality ...7

2.5.1 Repeating a table .. 7
2.5.2 Final velocity .. 7
2.5.3 Programming of several slave tables .. 7

2.6 Using ELCAM..8
2.7 Transfer of complete tables by PCI direct access..8

2.7.1 Design of the ElCAM table with 64bit float point presentation... 9
2.7.2 Design of the ElCAM table with 32bit float point presentation .. 10

2.8 Execution of ELCAM tables in the PC working memory ...10
2.8.1 Notes on the use of physical memory.. 11
2.8.2 Use of the ELCAM table interpolation with physical memory.. 11

3 Spindle inclination and angle error compensation ..12

3.1 Spindle inclination error compensation ...12
3.2 Angle error compensation ..12

1 Introduction

The ELCAM functionality of the ADDIPOS products enables individual axes of the system to track a master
axis via a table function. To do this, a calibration table is defined with almost any variables. Intermediate
values of the calibration points are calculated using linear interpolation.
The ELCAM functionality can be used for different applications:

• Multi-Line-tables: As option it is possible to define a further axis, which defines a line index for

the table. In this way it is possible to define a two-dimensional table, with which the slave axis is
controlled, depending on two master axes.

• Several tables: It is possible to define more than one table. In this way it is possible to enable
different axes bundles at the same time.

• Spindle incline compensation: With a specially configured table the spindle incline error of an
axis can be compensated.

• Angle error compensation. With a specially configured table the angle error of an axis system
can be compensated.

4 ELCAM INTERFACE

The ELCAM functionality is configured via the universal object interface of the APCI-8001. ELCAM is an
option within the APCI-8001 RWMOS.ELF operating system software. Using the fwsetup service
programme, you can check if the existing RWMOS.ELF software supports this option in the booted system.
By default, there is a 100,000 byte memory for ELCAM tables. If this is not sufficient, it can be increased
using the SZELCAMBUFFER environment variable. The maximum value for this memory depends on the
memory configuration for the control system used.
At very large tables (a few hundred kilo bytes to a few mega byte) the load period can be a few minutes. In
order to prevent this, it is possible to copy the whole table by PCI memory access directly from the PC
working memory into the RAM working memory of the control. In this way the load period can be reduced
significantly. For this, there are special loading commands.

2 Using the ELCAM functionality

2.1 Initialising ELCAM
The following values for the universal object interface must be used when using the ELCAM module:

Table 1: Object descriptor elements

Object descriptor
element

Value

BusNumber 1200
DeviceNumber 1
Index 0, 1, ...

Current number of the table (is assigned by the user)
Each table is referenced by a number and can serve
different axis bundles.

SubIndex Function number according to table 2.

For more information on the object descriptor elements, see G3 Universal Object Interface.pdf.

SECTION 2 - USING THE ELCAM FUNCTIONALITY 5

2.2 Functions of the ELCAM module
Table 2: Functions of the ELCAM module (SubIndex)
No

.
Name Type Explanation

1 ERROR integer r/w Read/reset error status
For bit coding, see table 3.

2 RESET integer r/w Reset table
A write call of this function ends the table tracking and rejects the
programmed table. This can now be reprogrammed.

3 BUFSIZE integer r/w Read/write number of table calibration points.
This function can be used to reserve a data buffer for a table. The size
cannot be increased retrospectively.
The parameter/return value is the maximum number of calibration points.
A table calibration point consists of two coordinate values (for master and
slave axis). At a multi-line table BUFSIZE must contain all lines of a table.
This buffer size must be used to reserve the memory for more than one
table.

4 AXIS integer r/w Read/write axis number of the axis which is to be tracked with this table.
5 MASTER integer r/w Read/write the axis number for the master axis of this table
6 GAIN double r/w Read/write gain of the slave axis.

Gain for the table calibrations of the slave axis.
Default value: 1.0

7 PHASE double r/w Read/write phase of the control input
Value for the shift of the table calibrations for the master axis.
Default value: 0.0

8 SHIFT double r/w Read/write shift of the slave axis.
Value for the shift of the table calibrations for the slave axis.
Default value: 0.0

10 MODE integer r/w Read/write operating type
By describing this register, the tracking mode can be activated. The
tracking process can also be parameterised. For the bit coding of this
register, see table 4.

11 ADDMASTER double w Enter calibration point in the master table
SIZEMASTER is increased. The calibration values must be constantly
increasing (exception: first value in a line for multi-line tables) but must
not be equidistant.

12 ADDFOLLOW double w Enter calibration in the slave table
SIZEFOLLOW is increased.

13 SIZEMASTER integer r Read the number of calibrations in the master table
14 SIZEFOLLOW integer r Read the number of calibrations in the slave table

An equal number of values must be entered in the master table and the
slave table.

15 MLAXIS integer r/w Read/write axis for line assignment
(Multi-line tables)

16 MLSTART double r/w Read/write start value of the line axis
(Multi-line tables)

17 MLEND double r/w Read/write final value of the line axis
(Multi-line tables)

18 MLCOUNT integer r/w Read/write number of lines
(Multi-line tables)
This value activates the multi-line function

6 ELCAM INTERFACE

Default value: 0
19 CALC

TARGET
POSITION

double r With this function, when the tracking mode is switched off, the current
position of the tracking axis can be calculated. Thus, it is possible to drive
the start position before activating the tracking mode and therefore avoid
uncontrolled jumps of the axis. The calling shall be done at standing master
axis
(Functions available in OS version V2.5.3.25)

20 ReadElCam
Memory
Address

integer r Read the memory address of the ElCam table.
This function is used internally and is not used in application programs.

21 SetTabSize integer w Set TabSizeMaster and TabSizeFollow.
This function is only required if the execution is realized from the working
memory.

30 Spindle
Compensation
Mode

integer r/w DeviceNr = 0 / Command 30 in the Index: Spindle compensation mode
 Enable / disable with 1 / 0
DeviceNr = 1: Mark the table as set for the spindle incline error
 compensation

30
0

ElCamPhysM
emAdr

integer r/w With this function a physical memory address can be transferred to the
ELCAM module. The variable BUFSIZE should be described firstly after the
transfer. Otherwise, it would be not possible to define tables that exceed
the memory size in RWMOS.

Table 3: Error error status of the ELCAM module

Bit No. Name Explanation
0..7 vacant

8 MemErr Memory is not sufficient for the table.
9 SizeErr Different number of calibrations or no value entered for Master or Slave

10 SizeMasterErr Too many calibration values entered for master axis.
11 SizeFollowErr Too many calibration values entered for slave axis.
12 MasterErr Master axis defined incorrectly
13 NotAscending Calibration value of the master axis not monotonic increasing
14 LineTableError Error in the definition of multi-line tables

Table 4: Mode configuration register of the ELCAM module

Bit No. Name Explanation
0 Run This bit is used to activate the table tracking
1 RpModeTable This bit is used to set the table tracking to track actual values. The default is

setpoint tracking.
2 RpModeLine This bit is used to set the calculation of the line index according to the actual

value. By default, the axis setpoint value is used here.
3 MultiDimTable This bit shows that a multi-line table is being used.

This bit is set by the system and cannot be set directly by the user.
4 SinglePrecision With this bit the data type float (32-bit float point) can be selected for the

RWMOS-internal presentation of the table points. Other than in the standard
presentation with 64-bit float point, only half the memory space is required.
This bit may be changed only, if no table points have been defined yet and the
number of table points (BUFSIZE) is not set yet. Otherwise the error 10 hex
will be returned.

5 SpindleComp
Set

This bit shows that this is a set for the compensation of the spindle incline
error / angle error.

SECTION 2 - USING THE ELCAM FUNCTIONALITY 7

2.3 Multi-line tables
To use this function, an axis must initially be defined that prescribes the table index (LineMasterAxis). Then
the start position, which represents the index 0, must be assigned using the MasterLineStart function, and
the end position, which represents the maximum index, must be assigned using the MasterLineEnd function.
The number of lines is defined using the MasterLineCount function. This function is deactivated when the
MasterLineCount value = 0 (default value).
When programming the calibration points for two-dimensional tables, the calibrations are programmed
consecutively line by line. Each line must have the same number of calibration points, and the same start
and end value for the slave axis. Before entering the calibrations, the MasterLineCount must be defined;
otherwise it is not possible to begin with small values for the slave axis when entering the second line. In this
case, the NotAscending error bit is set. These conditions are checked when the tracking mode is activated.
In the event of an error, the LineTableError error bit is set in the status word. After tracking has started, the
line number can no longer be changed.

2.4 Error request from ELCAM
To request an error, the error register must be read. For the bit coding of this register, see table 3.

2.5 Further characteristics of the ELCAM functionality

2.5.1 Repeating a table
A programmed table is repeated at the execution, each time after running the whole master traversing range.
If the repeat is not wished, it can be switched off by programming an external value out of the master
traversing range.

2.5.2 Final velocity
When the table interpolation of a tracked axis is disabled, while the axis is moving, the current velocity of the
axis is kept. If this is not wished, e.g. the commando Jog-Stop (js) must be send to the respecting axis.

2.5.3 Programming of several slave tables

When programming/using different tables at the same time, the accesses are referenced by the table index
in the index field of the corresponding ObjectDescriptor element. The table index is defined by the user.

From RWMOS V2.5.3.64 on it is possible to manage several tables for one slave axis. The activation of the
Run-Mode causes automatically the deactivation of all other tables for the same axis. In this way it is
possible to switch the slave directly from one table to another one. However, the switching should be realized
in a traverse range, in which the slave position of both tables is the same to prevent uncontrolled axis jumps
of the slave axis. Furthermore, in this case it is not possible to vary with Shift and Gain because this also
would lead to axis jumps when switching.

8 ELCAM INTERFACE

2.6 Using ELCAM

• Assignment of an index and allocation of an axis
• Allocation of the table size
• Multi-line tables: Define the number of table lines
• Multi-line tables: Set up other multi-line properties
• Enter the master and the slave tables
• Request status/error
• Detect ideal position of the slave axis and start
• Activate tracking via the mode register

Bit 0 = Tracking on
Bit 1 = Actual value tracking

• Start the master axis

2.7 Transfer of complete tables by PCI direct access
With very large tables (a few mega byte) the load period can be a few minutes. In order to prevent this, it is
possible from RWMOS.ELF V2.5.3.67 (mcug3.dll V2.5.3.43) on to prepare a table in the PC working memory
and to transfer it with a single function call into the working memory of the control. In this way the load period
can be reduced to a few seconds. Here it is important to distinguish if the numbers are presented internally in
64-bit float point numbers or in 32-bit float point numbers (see also Bit 4 in the configuration register mode of
the ElCAM module).
The transfer of the table from the PC working memory into the working memory of the control is realized with
the command wrElCamTable64 in 64 bit float point presentation and with the command wrElCamTable32 in
32-bit float point presentation.
The return value of this function must be checked for success. If the loading of the table was successful, the
value 0 is returned. Values unequal 0 show errors according to the following table:

Return value Description
0 Function realized successfully
7 Parameter size must be an integer product of 8 in 32-bit

float point presentation or 16 in 64-bit float point
presentation.

1 The ElCam table is already activated or the function call
was not selected acccording to Bit 4 (float or double) of the
ElCam status register;
or
The access to the ElCAM-Object-Interface is not possible.

2 The parameter size is too large or too small.
3 System error, e.g. if the system was rebooted from another

application during program execution.
4 Address of the ElCAM memory cannot be detected, e.g.

RWMOS does not support this function (available from
version V2.5.3.67 on)

5 DLL internal memory access is not possible, ElCAM
memory is too large or the file mcug3.dll must be adapted.

6 System error, e.g. if the system was booted from another
application during program execution.

When using these methods it is not checked if the X-values are increasing monotonously. Also the
completeness of the table cannot be checked here.
For using this function, the initialisation of the ElCAM module is realized as usual.

• Setting of an index and allocation of a master and slave axis
• Setting of the SinglePrecision bits in the register mode, if necessary

SECTION 2 - USING THE ELCAM FUNCTIONALITY 9

• Allocation of the table size
• Multi-line tables: Define the number of table lines
• Multi-line tables: Set further multi-line characteristics

After this, instead of the ADDMASTER and ADDFOLLOW calls, x and y of a table are each described in the
PC working memory according to the description below. After the writing on this table is finished, the table is
transferred with the commands (see above) to the control. After the transfer of the table, there are the
commands for the activation of the table as usual:

• Request Status / Error
• Detect the optimal position of the slave axis
• Activate the slave by the mode register

Bit 0 = slave on
Bit 1 = Setpoint value slave

• Starting the axis

2.7.1 Design of the ElCAM table with 64-bit float point presentation

double x0 double y0
double x1 double y1
double x2 double y2
... ...
double xn double yn

Sample in C:

struct {
 double x, y;
} ElCamTable[TABLESIZE];

Sample in Delphi:

TABLEPOINT = record
 x : double;
 y : double;
end;
ELCAMTABLE = ARRAY [0..TABLESIZE-1] of TABLEPOINT;

10 ELCAM INTERFACE

2.7.2 Design of the ElCAM table with 32-bit float point presentation

float x0 float y0
float x1 float y1
float x2 float y2
... ...
float xn float yn

Beispiel in C:

struct {
 float x, y;
} ElCamTable[TABLESIZE];

Sample in Delphi:

TABLEPOINT = record
 x : single;
 y : single;
end;
ELCAMTABLE = ARRAY [0..TABLESIZE-1] of TABLEPOINT;

2.8 Execution of ELCAM tables in the PC working memory
In order to work with tables that exceed the working memory of the APCI-8001, from RWMOS V2.5.3.68 on
there is the possibility to create an ELCAM table in the PC working memory and to use it directly via PCI
memory accesses. In this way the transfer to the control is not necessary anymore. However, it must be
considered that the table needs to be stored in a so-called “physical memory”. This memory is allocated
continuously throughout the whole area and that the “physical memory address” is known. With usual data
objects in PC programs, the user always works with “virtual addresses”. Physical memory can be allocated
with the function allocPhysMem(). This is a function of mcug3.dll. This prototype is declared in the
programming language interfaces of the ADDIPOS-Toolset software.

Function description only valid for APCI-8401
DESCRIPTION: With this function physical memory can be requested (allocated) from the Windows

operating system.
BORLAND DELPHI: function allocPhysMem (var VirtualAdr: Pointer; var PhysAdr: integer;

size : Integer): integer;
C: unsigned allocPhysMem (void **VirtualAdr, unsigned *PhysAdr, unsigned size);
PARAMETER: VirtualAdr: Pointer on the virtual address. This must be used in the Delphi-program

to use the memory.
PhysAdr: Wildcard for the physical memory address
size: Size of the memory to be requested in bytes

RETURN VALUE: 0 when successful, error code when failed
NOTE: The success of this function needs to be checked by all means. Memory areas that

are allocated with this function need to be released again with freePhysMem before
quitting the program.

SECTION 2 - USING THE ELCAM FUNCTIONALITY 11

The release of the memory that is allocated in this way is realized with the following function:
Function description only valid for APCI-8401
DESCRIPTION: With this function physical memory that was allocated before, can be released

again.
BORLAND DELPHI: function freePhysMem (VirtualAdr: Pointer): integer;
C: unsigned allocPhysMem (void **VirtualAdr, unsigned *PhysAdr, unsigned size);
PARAMETER: VirtualAdr: Pointer to the virtual address, which was delivered by allocPhysMem.
RETURN VALUE: 0 when successful
NOTE:

2.8.1 Notes on the use of physical memory

As Windows fragments the memory area sporadically during the runtime, it is not always possible to obtain
the requested memory actually. When using this function Windows XP should be used. Furthermore, it is
recommended to request the memory as soon as possible after the boot of the PC as each call of the
program under Windows fragments the memory more.
I

It is also possible that the memory is at your disposal at the first call of a function, but is not available
anymore after a new start.
Furthermore, it is possible with the miniport driver from version 8, to reserve physical memory in the boot
phase for the first use. With this method on a test computer with Windows XP and 1 GB memory once
512 MByte memory was as physical memory available. At this method it is necessary that exactly the
reserved memory size is requested with allcPhyMem().

2.8.2 Use of the ELCAM table interpolation with physical memory

The ELCAM tables should be used as described in the sections above. Additionally, the following aspects
need to be observed:

• Use of RWMOS.ELF V2.5.3.68 or higher version
• Allocate physical memory successfully
• Transfer the physical memory address to the ELCAM module with help of the function 300
• Define the maximum table size with BUFSIZE
• Table design as described in section 0 or 2.7.2.
• The transfer of the table to the control is not necessary, but the table size must be set with the

variable SetTabSize. Here the number of table points must be transferred.
• Initalisation and activation of the table as described above.
• Before terminating the program, release the physical memory again.

12 ELCAM INTERFACE

3 Spindle inclination and angle error compensation

With the help of tables of the ELCAM module spindle inclination compensation or angle error compensation
in right-angled system of coordinates can be realized. This functionality allows to improve the positioning
precision of axis systems through a compensation of known errors with the help of compensation tables.
The “spindle inclination and angle error compensation” is only available in RWMOS.ELF from version
V2.5.3.68 on under the condition that the option “optionELAM” is contained.

3.1 Spindle inclination error compensation

With this compensation a possible error is compensated in the spindle inclination. For this a table for the
corresponding axis is created, in which the master and slave axis (parameter MASTER and AXIS) is the axis
to be compensated. With ADDMASTER the corresponding values on the axis to be compensated are
inserted in the table. With the function ADDFOLLOW the corresponding compensation value, i.e. the error to
be balanced is inserted. The number of Master and Follow values must be the same. The master coordinate
must be rising. Start and final value of the compensation table are selected in a way that they are outside the
traverse range. Position values between points of the table are interpolated linearly between the
neighbouring table points. By writing the value “1” to the variable “SpindleCompensationMode” the table is
labelled as compensation table. For each axis an own table for spindle inclination error compensation can be
programmed.

3.2 Angle error compensation

Positioning errors caused by mechanical angle errors also can be compensated with the help of a
compensation table (as in section 3.1). In this case the indices of the Master and Error axis are different. For
each axis combination an own table can be programmed. The other aspects are as described in section 3.1

	Contents
	1 Introduction
	2 Using the ELCAM functionality
	2.1 Initialising ELCAM
	2.2 Functions of the ELCAM module
	2.3 Multi-line tables
	2.4 Error request from ELCAM
	2.5 Further characteristics of the ELCAM functionality
	2.5.1 Repeating a table
	2.5.2 Final velocity
	2.5.3 Programming of several slave tables

	2.6 Using ELCAM
	2.7 Transfer of complete tables by PCI direct access
	2.7.1 Design of the ElCAM table with 64-bit float point presentation
	2.7.2 Design of the ElCAM table with 32-bit float point presentation

	2.8 Execution of ELCAM tables in the PC working memory
	2.8.1 Notes on the use of physical memory
	2.8.2 Use of the ELCAM table interpolation with physical memory

	3 Spindle inclination and angle error compensation
	3.1 Spindle inclination error compensation
	3.2 Angle error compensation

